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Abstract: Despite great advances in remote sensing technologies, accurate satellite information is
sometimes challenged in tropical regions where dense vegetation prevents the instruments from
retrieving reliable readings. In this work, we introduce a satellite-based landslide rainfall threshold
for the country of Colombia by studying 4 years of rainfall measurements from The Climate Hazards
Group Infrared Precipitation with Stations (CHIRPS) for 346 rainfall-triggered landslide events (the
dataset). We isolate the two successive rainy/dry periods leading to each landslide to create variables
that simulate the dynamics of antecedent wetness and dryness. We test the performance of the
derived variables (Rainfall Period 1 (PR1), Rainfall Sum 1 (RS1), Rainfall Period 2 (PR2), Rainfall Sum
2 (RS2), and Dry Period (DT)) in a logistic regression that includes three (3) static parameters (Soil
Type (ST), Landcover (LC), and Slope angle). Results from the logistic model describe the influence of
each variable in landslide occurrence with an accuracy of 73%. Subsequently, we use these dynamic
variables to model a landslide threshold that, in the absence of satellite antecedent soil moisture data,
helps describe the interactions between the dynamic variables and the slope angle. We name it the
Landslide Triggering Factor—LTF. Subsequently, with a training dataset (65%) and one for testing
(35%) we evaluate the LTF threshold performance and compare it to the well-known event duration
(E-D) threshold. Results demonstrate that The LTF performs better than the E-D threshold for the
training and testing datasets at 71% and 81% respectively.

Keywords: rainfall-triggered landslides; tropics; statistical analysis; CHIRPS

1. Introduction

Landslides are a physical hazard that frequently result in devastating human and eco-
nomic losses around the world [1–3]. There are various underlying geological, lithological,
and morphological characteristics that make an area prone to these hazards. Nonetheless,
landslides can happen as a result of anthropogenic activities or can be triggered by natural
forces such as earthquakes, melting snow, or extreme precipitation [4–6].

Landslides that are triggered by rainfall are common phenomena in mountainous
tropical regions. These landslides are associated with long-term, high-intensity periods of
precipitation that have dangerous potential to initiate mass soil movement due to changes
in pore pressure and seepage forces in the soil [7–9]. Rainfall-triggered landslides are
usually shallow (0.3–2 m) and often driven by two different mechanisms. In the first, the
hydraulic conductivity of the weathering profile decreases, creating a perched water flow
that is parallel to the slope. This results in a reduction of the shear strength of the soil,
which leads to slope failure. In the second mechanism, water from the surface advances on
the slope while it is still unsaturated and, in this case, low suction results in a rigid mass
slope failure [8,10].
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Over the years, scholars have tried to define statistical or empirical correlations be-
tween slope failures and rainfall intensity and duration. These relationships are often
defined mathematically as rain thresholds that attempt to define the rainfall curve in be-
tween the slope’s stability and failure zones [11]. Since their inception in Cane (1980) [12],
precipitation thresholds have been established for Rainfall Intensity-Duration (I-D), Cumu-
lative Rainfall Event-Duration (E-D), Cumulative Rainfall Event Intensity (E-I), Rainfall
Cumulative (R), and other relationships between intraday rain and antecedent rainfall [13].

Inevitably, these thresholds are highly influenced by temporal and spatial factors
such as the location, range of the study area, and the instruments (rain gauges or remote
sensors) used to calculate them. To a large extent, in-situ sensors (gauges) have been used
to derive rainfall thresholds in various areas of the world. In Indian’s Himalayan region,
for example, several authors have used in-situ-based data for the definition of rainfall
thresholds. These scholars combined intensity-duration thresholds based on the daily
rainfall and antecedent rain by aggregating several days in different combinations, such as
2, 3, 5, and 20 days [14–16].

Nonetheless, recent advancements in satellite technologies have been a promising
and reliable source of data to map and model susceptibility, hazard, risk, and landslide
impacts in various areas of the world. Satellite products such as the Global Precipitation
Measurement Mission (GPM), for example, provide rainfall estimates that can help evaluate
rain as a landslide trigger at large scales [9,17]. Satellite soil moisture products have also
been successfully adapted in various shallow landslide studies. Ray et al. (2007), for ex-
ample, used moisture settings from the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) to demonstrate the correlation between moisture conditions,
rainfall patterns observed from the Tropical Rainfall Measuring Mission (TRMM), and
landslide occurrence. Brocca et al. (2012) used the soil water index (SWI) value derived
from the Advanced SCATterometer (ASCAT) to obtain soil moisture indicators that can
help predict landslide occurrence. Cullen et al. (2016) developed a shallow landslide index
(SLI) derived from the Soil Moisture Active Passive mission (SMAP) and GPM that can be
used as a dynamic indicator of the total amount of antecedent moisture and rainfall needed
to trigger a shallow landslide in North America.

Various studies have used remote sensors, or a combination of remote sensors and
gauges, to derive rainfall landslide thresholds. Brunetti et al. (2021), for example, used
GPM, SM2RAIN (Soil Moisture to Rain)—ASCAT rainfall products and daily rain gauge
observations from the Indian Meteorological Department to study 197 rainfall-induced
landslides. In this instance, results demonstrated that the satellite products outperformed
the in-situ sensors due to the better satellite spatial and temporal resolutions [18]. Contrary
to these results, M Rossi et al. (2017) described three statistical procedures for defining
satellite and gauge threshold methods in central Italy. In this case, the results indicated that
the thresholds derived from satellite data were lower than those obtained from gauges as
the satellite products underestimated the “ground” rainfall measured by the gauges [19].

Despite these developments, accurate satellite information is sometimes challenged
by the area’s physical characteristics. This is the case in tropical regions where dense
vegetation prevents the instruments from retrieving reliable readings. Complex and heavily
vegetated tropical areas usually pose a significant challenge for remote earth observations.
For example, exploratory analysis of the expected association between rainfall and soil
moisture is not observed when looking at data retrieved from NASA’s GPM and SMAP
missions in Colombia, South America. Methods such as those described in Cullen et al.
(2016) perceive the connection between remotely sensed precipitation and soil moisture
content but are useful only for less complex and less vegetated terrains.

Perhaps for this reason, various physical, and not satellite-based, rainfall thresholds
have been determined for the Colombian region. Marin et al. (2021) for example, applied a
physically based model to define rainfall intensity-duration thresholds and predict areas
susceptible to shallow landslides in tropical mountain basins of the Colombian Andes [20].
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Nonetheless, to the knowledge of the authors, as of the time of this writing, satellite-based
landslide rainfall thresholds for this area are not available.

Framework

This work proposes a framework for the development of a rainfall-triggered landslide
threshold derived from a system that incorporates satellite observations and physical
ground instrumentation at regional and global scales. As previously stated, remotely
sensed antecedent soil moisture conditions for the range of the study area are not available.
Therefore, we derive soil wetness conditions using a four-year (2016–2019) rainfall time
series from The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS).

First, we establish a relationship between the two successive rainfall episodes and the
dry period in between for the entire series. Subsequently, we test the performance of these
parameters in conjunction with static factors in a logistic regression. Here we leverage the
information provided in inventories, the expert opinion of specialists in the region, and the
various heuristic, statistical, and deterministic analyses in C.J. van Western (2008) [21] to
determine the static factors that should be incorporated into the analysis.

Dividing the dataset into training and testing sets, we then formulate a relationship
between the slope angle and the new dynamic parameters expressed as a threshold that
once exceeded will trigger a landslide. Later, we compare the performance between the
proposed threshold and the well-known event-duration (E-D) method for the training and
testing sets. Finally, we represent the proposed threshold values in a hazard map of the
study area.

2. Data
2.1. Geological and Climatological Settings

The country of Colombia is located in the northwest part of South America. It lies
between latitudes 4◦S and 12◦N and longitudes 67◦W and 79◦W bordering Panama to
the northwest; Brazil and Venezuela to the east; and Ecuador and Peru to the south. It is
surrounded by the Caribbean Sea to the east and the Pacific Ocean to the west. According
to the latest Colombian census of 2018, there are approximately 45,500,000 million residents
in the country, many of whom inhabit the interior mountain ranges [22].

The Colombian Mountain ranges, or the Colombian Andes, are the result of subduction-
accretion in the triple-plate junction of the Nazca, Caribbean, and South American plates,
where tough terrains with steep slopes dominate the landscape. Moreover, these hillslopes are
overlain by thick weathering profiles that consist of residual soils, saprolites, and weathered
rock horizons. They are divided into three mountain ranges, known as the Western, Central,
and Eastern mountains. Geomorphologically, it is a diverse country divided into five distinct
natural regions: The Andean Mountain range, the Caribbean Sea coastal region, the Pacific
Ocean coastal region, the lowlands of the Amazon, and the Orinoco region. The Andean
Mountains have only 33% of the landmass, but 78% of the national population. This region
also presents 92.5% of the total landslide reports, where 92% are triggered by rainfall [23].

Colombia has a tropical climate that exhibits a highly intermittent rainfall behavior in
space and time. The mean annual precipitation over the whole country is 2830 mm [24].
Along the Andean region, the mean annual precipitation ranges from 1000 to 3000 mm,
where strong topographic features produce local atmospheric circulations and convective
rainstorm events, which commonly trigger flash floods and landslides [25]. Additionally,
the double migration of the Inter-Tropical Convergence Zone (ITCZ) strongly controls
the bimodal regime of rainy periods. This pattern is mainly observed in central and
western Colombia where rainfall peaks are prominent in the months of March-April-
May (MAM) and September-October-November (SON) [26]. The interannual rainfall
variability is controlled mainly by El Niño/Southern Oscillation (ENSO). During El Niño,
there is a decrease in precipitation and mean monthly flow of Colombia’s rivers as well
as a decrease in soil moisture, whereas La Niña is generally associated with positive
precipitation anomalies [27].
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The Colombian territory is a complex tectonic setting under extreme hydro-meteorological
conditions. These conditions create a multi-hazard landscape where geomorphological phe-
nomena such as landslides, debris flows, earthquakes, and flooding are frequent. The Andes
mountains that cross Colombia from south to north, for example, make the country extremely
vulnerable to landslides. On Saturday, 1 April 2017, the Mocoa landslide is just one illustration
of a heavy rainfall-triggered event in Colombia. More than 300 people were killed, 400 were
injured, and the city was destroyed [28]. Later in the same month, on 20 April 2017, another
landslide, in a different region, resulted in at least 17 deaths and dozens injured [29]. Although
significant, these are just a few examples of the vast occurrence of landslide events in the
region; Aristizábal and Sanchez (2020) recorded 32,022 landslides occurring in the 116 years
between 1900 and 2016. Out of these events, 93% occurred in the Colombian Andes region,
and 92% were landslides triggered by rainfall.

2.2. Landslide Inventory

El Servicio Geológico Colombiano (SGC) (https://simma.sgc.gov.co, accessed on
5 May 2020) and the National University of Colombia (https://geohazards.com.co/, ac-
cessed on 5 May 2020) keep landslide records in inventories for the Colombian territory.
Both these registers are used in this work in such a way that one helps complement the other
for the basis of evaluating static parameters. There were 396 landslides between the years
2016 and 2019 in Colombia, 346 triggered by rain, some of which resulted in numerous
fatalities. For this work, each landslide event listed in the inventories is converted into a
Geo Information System (GIS) point format for geo-location and corresponding retrieval
of parameters.

Figure 1 below shows landslide events occurring between 2016 and 2019 as listed in
these inventories. A bimodal annual pattern of landslide occurrence is observed in the data,
with two maximum peaks in May and October-November, reflecting the strong influence
of rainfall on landslide occurrence.
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2.3. Static Parameters

Slope gradient is invariably one of the most significant physical parameters as shown
by the various heuristic, statistical, and deterministic analyses in C.J. van Western (2008).
In this work, slope angles are derived from NASA’s Shuttle Radar Topography Mission
(SRTM) V3 [30]. SRTM provides digital elevation information at a 30 m resolution. We
obtain the slope angle measurements using Google Earth Engine and extract slope angle
values for each of the landslide event points.

https://simma.sgc.gov.co
https://geohazards.com.co/
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Landcover of the study area was attained from the Copernicus Global Land Cover
Layers: CGLS-LC100 Collection 3 (CGLS). The Copernicus information compiles a global
landcover map at 100 m spatial resolution based on a database of landcover training
sites and ancillary datasets. Copernicus released a landcover map for each year in the
2015–2019 period. Copernicus provides up to 80% accuracy over all the years of analy-
sis [31]. Landcover information was also retrieved using Google Earth Engine and similarly
corresponding event values are set aside in the landslide inventory database.

Major soils distribution for the study area was acquired from the United States Depart-
ment of Agriculture (USDA), the National Cooperative Soil Survey (NCSS) [32] in GeoTiff
format, and the Colombian Instituto Geográfico Agustín Codazzi (IGAC) [33] in shapefile
format. These maps provide information at scale: 1:5,000,000 and 1:100,000, respectively.
We use both these datasets to corroborate and complement soil characteristics but select
major categories as described in the USDA format. We use ArcGIS 10.7 to extract values
corresponding to each one of the landslide events.

2.4. Dynamic Parameters

It is well established that rainfall intensity and duration can trigger shallow landslide
activity [8,34]. Tropical areas that climatologically are more exposed to extreme rainfall
events are usually located at the top of mountainous catchments. Not surprisingly, civil
infrastructure and human settlements are very common along the gentle surfaces of these
mountainous areas, which are composed of alluvial sediments in the lower catchments
close to the mouth.

Although various satellite products are available to retrieve rainfall information glob-
ally, accurate measurements in tropical regions are usually hindered by dense vegetation
that prevents the instruments from retrieving reliable readings. For this reason, data that
are from a hybrid between satellite and ground instrumentation present an opportunity to
remotely study rainfall dynamics in these areas.

The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) effort was
developed by the United States Geological Survey (USGS) and the Climate Hazard Group
(CHG) at the University of California Santa Barbara (USCB) to support the United States
Agency for International Development Famine Early Warning System Network (FEWS NET).
CHIRPS builds on various thermal infrared (TIR) precipitation products, calibrates global
cold cloud duration rainfall estimates with the Tropical Rainfall Measuring Mission Multi-
Satellite Precipitation Analysis version 7 (TMPA 3B42 v7), and uses various interpolated
gauge products. CHIRPS data are available globally from 6-hour to 3-month aggregates at
a 0.050 × 0.050-degree spatial resolution [35]. CHIRPS has been validated for Colombia. At
least 338 rain gauges from the Colombian Instituto de Hidrología, Meteorología y Estudios
Ambientales (IDEAM) were used to compare CHIRPS results, and correlations of R = 0.97 were
reported accompanied by the benefit of relatively low latencies [35].

For this work, CHIRPS Daily: Version 2.0 Final was retrieved using Google Earth
Engine. Daily precipitation between 2016 and 2019 was obtained for each latitude and
longitude landslide point in the inventory. Table 1 below describes all the static and
dynamic datasets used in this study, and Figure 2 shows them in the study area.

Table 1. Datasets used in this work.

Data Type Dataset Resolution/Accuracy Extent Source

Slope SRTM 30 m Global NASA/USGS/JPL-
Caltech

Landcover Copernicus 100 m Global Copernicus
Soils USDA 1:5,000,000 Global USDA

Rainfall CHIRPS 0.05◦ × 0.05◦ Global UCSB/CHG

Landslide inventory Universidad Nacional
De Colombia/SGC

Various mapping scales
and survey types National Universidad Nacional

De Colombia/SGC



Remote Sens. 2022, 14, 2239 6 of 20

Remote Sens. 2022, 13, x FOR PEER REVIEW 6 of 20 
 

 

Table 1. Datasets used in this work. 

Data Type Dataset Resolution/Accuracy Extent Source 

Slope SRTM 30 m Global 
NASA/USGS/JPL-

Caltech 

Landcover Copernicus 100 m Global Copernicus 

Soils USDA 1:5,000,000 Global USDA 

Rainfall CHIRPS 0.05° × 0.05° Global UCSB/CHG 

Landslide 

inventory 

Universidad 

Nacional De 

Colombia/SGC 

Various mapping 

scales and survey 

types 

National 
Universidad Nacional 

De Colombia/SGC 

 

Figure 2. Datasets used for the study area and corresponding landslide events happening between 

2016 and 2019: (a) CHIRPS rainfall (mm)—used in the logistic model and LTF method; (b) slope 

angle derived from SRTM V3—used in the logistic model and LTF method. (c) USDA Soils Classifi-

cation—used in the logistic model; (d) Copernicus Landcover 2019—used in the logistic model. 

Figure 2. Datasets used for the study area and corresponding landslide events happening between
2016 and 2019: (a) CHIRPS rainfall (mm)—used in the logistic model and LTF method; (b) slope angle
derived from SRTM V3—used in the logistic model and LTF method. (c) USDA Soils Classification—
used in the logistic model; (d) Copernicus Landcover 2019—used in the logistic model.

The landslide inventories used in this work are maintained by the SGC and the Univer-
sidad Nacional and are two of the most complete in Colombia. For the 2016–2019 period,
they list 346 rainfall triggered landslides. Both inventories are complemented with field
campaigns that provide detailed descriptions of the events. However, landslide inventories
are usually not free of inaccuracies that challenge the use of statistical methods to determine
relationships between factors that can lead to a landslide event. This process becomes more
intricate at the regional level because the related spatial and temporal data are extracted
from remote sensors. Figure 3 below shows rain triggered landslide occurrence as listed in
the inventory in the study area and the respective average cumulative rainfall for those
events derived from CHIRPS. A remarkable peak in the number of landslides and rainfall
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in May 2018 is observed. This period corresponds to a strong La Niña ENSO event as
reported in the Multivariate ENSO Index (MEI) [26].

Remote Sens. 2022, 13, x FOR PEER REVIEW 7 of 20 
 

 

The landslide inventories used in this work are maintained by the SGC and the Uni-

versidad Nacional and are two of the most complete in Colombia. For the 2016–2019 pe-

riod, they list 346 rainfall triggered landslides. Both inventories are complemented with 

field campaigns that provide detailed descriptions of the events. However, landslide in-

ventories are usually not free of inaccuracies that challenge the use of statistical methods 

to determine relationships between factors that can lead to a landslide event. This process 

becomes more intricate at the regional level because the related spatial and temporal data 

are extracted from remote sensors. Figure 3 below shows rain triggered landslide occur-

rence as listed in the inventory in the study area and the respective average cumulative 

rainfall for those events derived from CHIRPS. A remarkable peak in the number of land-

slides and rainfall in May 2018 is observed. This period corresponds to a strong La Niña 

ENSO event as reported in the Multivariate ENSO Index (MEI) [26]. 

 

Figure 3. Monthly rainfall-triggered landslide events during the study period 2016–1019 and 

monthly cumulative rainfall data for the same timeframe from CHIRPS. 

3. Methods 

3.1. Dynamic Factors Modeling—Soil Moisture and Rainfall 

For the basis of this analysis, we assume that soil moisture content for a specific lo-

cation is dependent on the amount and duration of the rainfall that occurs before the land-

slide event and in the non-rain (dry) periods between rainfall episodes. By following the 

successive rainfall/dry periods, we can characterize how much moisture is left in the soil 

directly before the landslide. A rainfall series for each landslide event location for 4 years 

(starting on 1 January 2016 and ending on 31 December 2019) is used to find precipitation 

characteristics for every two successive rainfall episodes as described in Table 2 and illus-

trated in Figure 4 below. 

Figure 3. Monthly rainfall-triggered landslide events during the study period 2016–1019 and monthly
cumulative rainfall data for the same timeframe from CHIRPS.

3. Methods
3.1. Dynamic Factors Modeling—Soil Moisture and Rainfall

For the basis of this analysis, we assume that soil moisture content for a specific
location is dependent on the amount and duration of the rainfall that occurs before the
landslide event and in the non-rain (dry) periods between rainfall episodes. By following
the successive rainfall/dry periods, we can characterize how much moisture is left in
the soil directly before the landslide. A rainfall series for each landslide event location
for 4 years (starting on 1 January 2016 and ending on 31 December 2019) is used to find
precipitation characteristics for every two successive rainfall episodes as described in
Table 2 and illustrated in Figure 4 below.

Table 2. Variables created to track rainfall days, dry days, and rainfall amounts leading to a landslide
event in the inventory.

Variable Name Represents

PR1 Total number of days of Precedent Rainfall event
RS1 Rainfall Sum during PR1 in mm
PR2 Total number of days of rainfall event following PR1
RS2 Rainfall Sum during PR2 in mm
DT Non-rainfall day period between two consecutive rainfall events
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Figure 4. An example of rainfall characteristics for two successive rainfall/dry periods at one
landslide location. PR1 and RS1 represent the very first rainfall recorded at one location: (PR1)
number of days that the rainfall (intermittently lasted) and (RS1) the total amount of rainfall in that
period. Then, there was no rain for 2 days (DT), but later it rained for 2 extra days (PR2) amounting
to the triggering rainfall (RS2). These rainfall/dry pairs start at the beginning of the rainfall time
series (01/01/2016) until the time of the landslide as listed in the inventory. Each pair is stored as a
“running” data line where PR2 and RS2 become PR1 and RS1 of the following line.

As we investigate the rainfall/dry periods for each landslide location throughout the
4 years, we obtain approximately 125,901 data lines of RS1, RS2, PR1, PR2, and DT pairs.
Table 3 below shows an example of the successive rainfall/dry periods for one location.

Table 3. Example of rainfall/dry periods for one location from the beginning of the time series until
the moment of the event—one landslide.

PR1 (Days) RS1 (mm/Day) DT (Days) PR2 (Days) RS2 (mm/Day)

1 34.30 2 1 34.30

1 34.30 1 3 52.31

3 52.31 27 1 11.87

1 11.87 3 1 6.00

1 6.00 2 1 8.17

. . . . . . . . . . . . . . .

Consequently, we look for the two successive rainfall occurrences that lead to each
one of the landslide events in the inventory. We investigate the rainy and dry periods right
before the event and generalize them in Equation (1) as Pre-event Moisture Content.

PMC =
RS1

PR1∗DT
(1)

where PMC is an indicator factor of the moisture content in the soil before the landslide
event and it is deemed as a first landslide triggering condition. Theoretically, any high
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values of RS1, associated with low PR1 and DT values, will increase the probability of a
landslide event and therefore increase the PMC value.

The second condition is the triggering rainfall episode when the landslide happened,
expressed in Equation (2) as Rainfall Sum Trigger.

RST =
RS2

PR2∗DT
(2)

where RS2 and PR2 are as described above. Mathematically, the RST value will be higher
for higher RS2 associated with a low PR2 value. With a higher RST value, the soil will
receive a higher amount of rainfall in a shorter period, therefore increasing the possibility
of a landslide event.

3.2. Logistic Modeling—Dynamic and Static Factors

In this study, we define rainfall-triggered landslide susceptibility as the probability
that a downslope movement would occur with rainfall as a trigger, but we also consider
the pre-existing factors that underlie the physical characteristics of the region. We employ
a stochastic approach in the form of logistic regression to understand the relationships
between the newly derived dynamic variables, (PR1, RS1, PR2, RS2, and DT), some of the
most important static factors (Slope, Landcover, and Soil type), and the landslide probability
for the region. We use a logistic regression algorithm because it is a straightforward method
for when some of the predictor variables are categorical [36]. The logistic regression
method differs from the linear one in that the dependent variable is binary and represents a
probability of the outcome. In our case, 1—landslide and 0—no landslide. This dichotomy
makes the logistic regression approach a simple and helpful process to delineate landslide
susceptibility as demonstrated by the numerous applications in various settings [9,36–46].

The logistic model can be, in its simplest form, as indicated in Equation (3), where the
“log-odds” is denoted by Z, which depends linearly on the dynamic and static variables.
The coefficients of this dependency are estimated in Section 4.1, using maximum likelihood
estimation (MLE).

Probability (Landslide = 1) =
1

1 + e −z (3)

In Equation (3), as Z increases, the probability of a shallow landslide event increases
and vice-versa.

Four-years of rainfall data on each landslide location resulted in several (125,901) sets
of dynamic values as explained above in Section 3.1. However, many of these values did not
lead to the landslide event. For the proper setting of logistic regression, there were too many
no-landslide to landslide values; the ratio was 93:7. Performing a logistic regression under
these conditions would result in an erroneous predictive accuracy; therefore, we employed
an under-sampling technique known as Synthetic Minority Under-Sampling Technique
(SMOTE). SMOTE is an under-sampling method where the larger class is under-sampled
by randomly selecting examples [47]. The resulting data for modeling had a 1:1 ratio of
1—landslide to 0—no-landslide. We use a Python subroutine that calculates the logistic
regression for all dynamic and static variables.

Using training data for model assessment is not acceptable for evaluating the model’s
performance in machine learning processes. Hence, we divide the landslide and no-
landslide datasets into two groups: one for training, with approximately 70% of the data,
and one for testing with the remaining 30%, as shown in Table 4 below.

Table 4. Training and testing data—under sampling SMOTE.

Event Cases Under SMOTE Cases Training Cases Testing

1 346 346 241 105
0 125,901 346 238 108

Percentage 100% 100% ~70% ~30%
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The receiver-operating characteristic plot (ROC) is a solid logistic regression model
performance evaluation, as it classifies the sensitivity (true positive rate) and the specificity
(true negative rate) of the model. A model with high discrimination ability possesses high
sensitivity and specificity simultaneously. Therefore, the area-under-ROC (AUC) grants
the evaluation of thresholds in the model.

3.3. Landslide Thresholds
3.3.1. Landslide Triggering Factor—LTF

We integrate the two activating conditions PMC and RST into a landslide triggering
factor LTF and normalize it by the slope angle parameter under the premise that as the
slope increases, the amount of rainfall necessary to trigger a landslide event will decrease
and vice-versa. In this manner, the LTF simply describes the relationship between the
expected antecedent moisture content in the soil PMC and the rainfall RST that, according
to the landslide inventory, triggered the event. The LTF can be seen in its equation form in
Equation (4) below:

LTF =
PMC + RST

Slope
(4)

where PMC and RST are as described above.
Equations (1), (2), and (4) were developed in this work to satisfy the mathematical

probability of a landslide occurring. With the LTF, when the dynamic variables PMC
and RST for a given slope angle increase, the probability of a landslide event increases as
well. In contrast, as the dry period between the two successive rainfall occurrences (DT)
increases, the probability of a landslide decreases.

3.3.2. Cumulative Rainfall Event-Duration (E-D) Threshold

The intensity or duration of rainfall periods can be used to establish statistical or em-
pirical correlations to shallow landslide occurrence. These relationships are often expressed
as rainfall thresholds that once exceeded, will cause a landslide [48]. The intensity-duration
(I-D) threshold, for example, relates these quantities in a power law (I = αD−b, where I
is the rainfall mean intensity in mm/h; D is the duration of the rainfall event expressed
hourly or daily; α is the scaling constant; and b represents the slope) [9].

Contrary to the I-D method, the event-duration (E-D) threshold does not consider the
intensity, but instead, the total or cumulative rain. The cumulative precipitation event E is
expressed as the total rain from beginning to end that triggered the landslide event. In the
literature, various authors have expressed the E-D threshold in a similar power function to
the I-D as shown in Equation (5a), where E is measured in (mm) for the full precipitation
period; D is the duration of the rainfall episode, and it is expressed hourly or daily; α is
the rainfall depth; and γ is the threshold inclination generated from the power function
regression [13]. Similarly, the E-D threshold linear form was introduced by Valenzuela et al.
(2019) as per Equation (5b) below:

E = αD−γ (5a)

E + αD = C (5b)

where E is the cumulative rain in (mm); D is the rainfall period expressed hourly or daily;
α is the slope of the fitted line; and where C represents the y-intercept [49].

In this study, we evaluate both the power and linear functions but implement the E-D
threshold in its linear form as a baseline to evaluate the LTF threshold performance. As
previously noted, the landslide inventories used in this work do not provide the time, but
the date of the event. In the lack of rainfall intensity information, the E-D threshold is most
useful in this application. We also divide the dataset into a training group of approximately
65% and a testing group of approximately 35% for evaluating each of these methods.
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3.4. Assumptions

Studying rainfall-triggered landslides at large scales using remote sensors and databases
presents various challenges due to the non-structured nature of the information. In this study,
it is important to highlight the following:

1. Both the logistic regression model and the LTF threshold are data driven approaches.
2. We assume that pore pressure increases due to liquefaction of the material.
3. We suppose that soil moisture content for a specific location is dependent on the

amount and duration of the rainfall that occurs before the landslide event and on the
non-rain (dry) period between the two events. We do not incorporate root uptake or
evapotranspiration information.

4. Daily rainfall temporal resolution is used because the landslide inventory lists a date,
not a timestamp of when the event occurred.

5. It is understood that a landslide changes the physical characteristics of the area. It
may flatten the slope and remove the weak soil layer, which in return may change the
landcover. Under these circumstances, the calculated LTF for that location no longer
applies because conditions have changed.

4. Results
4.1. Logistic Regression—Dynamic and Static Factors

The estimated coefficients for each factor affecting the “log-odds” using the maximum
likelihood estimate (MLE) in the logistic model is presented in the Z-factor for Equation
(3) above:

Z = −(0.33PR1 − 0.01RS1 + 1.87DT + 0.33PR2 − 0.01RS2 + 0.20slope + 0.90SoilType) (6)

In Equation (3), P tends to 1 as Z in Equation (6) increases. As Z increases, the proba-
bility of a shallow landslide event tends towards 1 (landslide). In contrast, as Z decreases,
the probability tends to 0 (no-landslide). The relationship between the coefficients and the
probability is expressed as positive (landslide) or negative (no-landslide).

Landcover and soil type are categorical variables with six and five categories, respec-
tively, for the study area and are described in depth in H. Eswaran (2016) and Smets (2020),
respectively. Because this is a data-driven model, we do not assign any weight to any soil
or landcover type. Instead, we create dummy variables for each category at each location.
After segregating meaningful types of these categories using the RFE process, we are left
with those that either influence the event to occur or not. Those with positive coefficients
have a positive relationship to event causation and vice versa.

Validation results of the logistic regression demonstrate that the model can correctly
predict 73% of the cases using the newly created dynamic variables. Figure 5a shows the
ROC curve that helps summarize the model predictability based on the area under the curve
(AUC). The AUC reflects the probability that a randomly chosen actual landslide incident
will have a high chance of classification as being an actual event. The model has an AUC of
0.73, suggesting good data-driven predictability for landslide events. Figure 5b shows the
confusion matrix for the model. These values help explain the precision (true positive)/(true
positive + false positive), recall (true positive)/(true positive + false negative), and F1-
measure, which combines the precision and recall. These measurements can be seen in
Table 5 below.

Table 5. Precision, recall and F-measure.

Class Precision Recall F1-Score

0 0.71 0.79 0.75
1 0.75 0.67 0.71
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The odds ratio (OR) demonstrates how a one-unit increase or decrease in a variable
affects the odds of initiating a landslide event. In Table 6 below we see that for one unit
increase in PR1, we expect that there is 0.718 times increase in the odds of a landslide
happening. The other independent variables can be interpreted the same way.

Table 6. Odds Ratio.

Variable Coefficients OR

PR1 −0.33 0.718
RS1 0.01 1.013
DT −1.87 0.153
PR2 −0.33 0.715
RS2 0.01 1.011
Slope −0.20 0.851
Soil Type −0.90 0.404

4.2. Landslide Triggering Factor (LTF) Thresholds—Dynamic Factors and Slope

The LTF value for the training (65%) and testing (35%) datasets is assessed using
Equation (4) for every two rainfall/dry periods at each landslide location from 1 January
2016 to 31 December 2019. LTF values that are associated with an actual landslide event are
set as thresholds for the corresponding slope angles. Equation (7) and Figure 6 below show
the inverse function that relates the LTF and the Slope angle.

LTFThreshold = 42.91 Slope−1.068 (7)

where the determination coefficient (R2) for the LTF threshold-Slope relationship as per
Equation (7) is R2 = 0.836. Figure 6 shows that the LTF-Slope angle relation rapidly changes
in smaller slope angles, whereas it barely fluctuates in larger ones. Slopes greater than 25◦

show an asymptote average threshold value of 1.227 with a standard deviation of 0.104.
The LTF-slope relationship is congruent with the physical mechanisms that drive

rainfall-triggered landslides. Physically, a rainfall-triggered landslide develops as the
moisture content of the soil and its pore pressure increase. The slope fails when the driving
force along the slip failure surface is greater than the shear strength of the material and its
cohesion [50]. In steep-slope angles, the weight of the soil along the slope surface is already
significant. In this case, a small amount of additional water weight is likely to initiate a
failure. This explains the low variation of the LTF in the high slope ranges. Alternatively,
for small slope angles, the soil’s weight component along the slip surface that contributes
to the slope failure is relatively small, and therefore, a substantial additional water weight
component is needed to initiate a failure. Hence, for small slope ranges, the LTF exhibits
more heightened variations.
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Landslide Triggering Factor Error—False Positive Rate (FPR)

The false positive rate is defined as the probability of falsely rejecting the null hypoth-
esis. In our case, it represents the negative cases in the data that were mistakenly reported
as positive or where the LTF threshold was exceeded but there was no landslide event.
Consequently, we use the FPR concept to check the adequacy of the LTF threshold value as
per Equation (8) below:

FPRLTF =
LTFOver

TotalPeriods − 1
(8)

where LTFOver are the times in the rainfall series where the LTF value exceeded the
established LTF threshold. TotalPeriods are the total number of rainfall/dry periods from
the first day of the rainfall series to the actual landslide event. In this case, the maximum
observed FPR value for all training cases was 0.271, demonstrating a 73% overall accuracy.
Similarly, the testing dataset, 35% of the cases, presented a maximum FPR of 0.274 showing
an overall performance of 72.6%.

4.3. Accumulated Rainfall Duration (E-D) Threshold—Dynamic Factors and Slope

The E-D values in the power and linear forms for the training dataset are shown in Fig-
ure 7a,b below. In these Figures, the E-D threshold values are fitted with the corresponding
E-D linear and power forms as per Equations (5a) and (5b) above.
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For each instance, the corresponding curve becomes as per Equations (9a) and (9b).

EDThreshold = 28.77 D0.714 (9a)

EDThreshold = 15.83 + 16.24 D (9b)

Equations (9a) and (9b) define whether a landslide event happens or not. Here, for an
observed accumulated rainfall (E) for a time duration (D), if E is greater than the threshold,
a landslide should be expected. However, in this case, the linear form exhibits a higher
determination coefficient (R2 = 0.68), thus, we use this form.

Accumulated Rainfall Duration (E-D) Thresholds Error—False Positive Rate (FPR)

We calculate the E-D threshold false positive rate (FPR) using the same approach as
for the LTF FPR. In Equation (10) below, we substitute LTFOver for EDOver from Equation
(8) above.

FPRED =
EDOver

TotalPeriods − 1
(10)

where EDOver are the times in the rainfall series where the E value exceeded the established
E-D threshold, and TotalPeriods are the total number of rainfall/dry periods from the first
day of the rainfall series to the actual landslide event. In this case, the maximum observed
FPR value for all training cases was 0.60.

4.4. LTF Threshold vs. E-D Threshold

It is well known that the antecedent moisture conditions of the soil before a landslide
event are critical for landslide initiation. Regardless of the intensity and duration of a
rainfall episode, shallow landslides are directly affected by soil moisture conditions [51,52].
Various physically based analyses have demonstrated that slope instability does not only
depend on the intensity of the rain or its duration. It is the case that extensive precipitation
within a dry period can trigger a landslide as much as a low-intensity rainfall during a wet
period [53]. Similarly, pre-existing wet conditions can cause large debris flow during or
following a downpour [54].

The E-D method uses the duration and accumulation of the triggering rainfall to
establish a threshold value that, once exceeded, will lead to a landslide event. The LTF
method, instead, not only considers the triggering rainfall but also evaluates the effects of
the preceding precipitation before the triggering rain and the dry period in between the
two rainfalls. The maximum observed FPR for the E-D method for the training dataset was
0.60. Conversely, the LTF FPR was 0.271 as noted above.

Figure 8a,b below show the E-D and LTF threshold FPR values for the training and
testing datasets. In both cases, the LTF threshold performs better than the E-D threshold
for 71% and 81% of the cases, respectively.

The difference in performance between the two thresholds can potentially be explained
by the introduction of parameters that simulate the state of the soil before the landslide
event and by relating them to the slope inclination. The LTF method considers five dynamic
variables (RS1, PR1, RS2, PR2, and DT) that precariously simulate the wet state of the
soil before the landslide event affecting the probability of a landslide. This assumption
is possible under the notion that the slope angle inclination is inversely proportional to
the amount of rainfall necessary to trigger a landslide. Conversely, by design, the E-D
threshold does not consider any information about the soil wetness pre-event, therefore
limiting its performance.
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4.5. Landslide Triggering Factor—(LTF) Thresholds Hazard Map

A landslide hazard map that shows the probability of where and when an event
would happen, as defined by Guzzetti et al. (2005) [55], can be derived by applying the
LTF threshold concept to the slope angle distribution in the study area. From Equation (4)
above, we can now derive a dynamic value that can be mapped for all areas where the
quantities of both rainfall periods (RS1, RS2), their duration (PR1, PR2), and the dry period
in between (DT) exceeds the LTF threshold as follows:

DynamicMap (DM); LTF > LTFThreshold (11)

By defining DM as in Equation (11):

DM =
RS1

PR1∗DT
+

RS2
PR2∗DT

(12)

And then substituting Equations (4), (7), and (10) into Equation (11) and simplifying:

DM > 42.91∗Slope−0.068 (13)

The DynamicMap (DM) quantities represent the average rainfall in mm/day of the
two rainfalls divided by the dry period between the two rainfalls in days. In Figure 9
below, it is anticipated that when the DM quantity exceeds the LTF threshold multiplied
by the slope, a landslide should be expected. Areas located in the mountainous Andes
region show relative low DM (Equation (12)) values necessary to trigger a landslide. This
is evident, as the area is characterized by high slopes. Conversely, areas located in the
Caribbean Sea coastal region, the Pacific Ocean coastal region, and the lowlands of the
Amazon and Orinoco regions with gentle or very low slopes require higher DM values.

The DM values map highlights the Andes region as the area that is at most risk of
landslides with lower DM threshold values. From a risk management perspective, new
DM values can be derived from weather forecasts where a landslide should be expected if
the new calculated DM values overpass the DM thresholds presented here.
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4.6. Challenges and Limitations

It is important to highlight the limitations of this work. First, the landslide records
on which this work was based do not provide a timestamp of the event. For this reason, a
daily average of rainfall estimates is used to develop both the logistic model and the LTF
thresholds. Information that reflects the exact time of the event could have a significant
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impact on the LTF and DM thresholds. CHIRPS, for example, provides rainfall information
every 6 h, and having a landslide inventory that gives a time of event could be useful to
improve performance.

Second, because of the lack of satellite-based antecedent soil moisture information
for the study area, wet and dry periods are used to simulate the effect that antecedent soil
wetness would have in landslide initiation. This point itself is a significant assumption,
as all the intrinsic physical dynamics of soil moisture conditions are not accounted for.
Furthermore, this notion is based on rainfall estimates, and although these approximations
have demonstrated high correlations with in-situ gauges, they have their limitations and
uncertainties. Consequently, they have a direct effect on the LTF and DM thresholds.

Finally, although the DM map could serve as guidance for the landslide rainfall
threshold, it is essential to note that the DM map is based on a 30 m resolution, but many
landslides occur at smaller scales.

5. Conclusions

Rainfall-triggered landslides are a significant and constant hazard for the Andes
region. This danger, coupled with the lack of availability of on-site instrumentation and the
reliability of remotely sensed information, opens the need for more imaginative ways to
unravel the problem. We present a data-driven solution in the form of dynamic variables
derived from a satellite infrared precipitation and station data, CHIRPS, to simulate soil
moisture variations and build a landslide triggering threshold in the Colombian region.

With the assumptions detailed above, we study four years of daily rainfall at 346 land-
slide events in the region. We focus on the two consecutive rainfall occurrences and
corresponding dry periods leading to each one of the landslide events in the inventory. We
then use them as dynamic variables. We first investigate the relationship of these rainy/dry
periods in a logistic algorithm where results demonstrate acceptable performance of 73%.

Consequently, we take the rainy and dry periods right before the landslide event and
simplify them as the PMC value. This value serves as an indicator for the moisture content
in the soil before the landslide event. The triggering rainfall episode is then expressed as
the RST value. Accordingly, these two factors are normalized with the effect of the slope
angle giving rise to the LTF concept.

The LTF model allows for the allocation of threshold values associated with slope
angles, and we see that as the slope increases the LTF decreases. The LTF also serves as
a guidance for landslide hazards in the region, as areas with lower threshold values and
high slopes are at a higher risk of landslides and vice-versa.

Although the simulated LTF lacks details about the complex processes that drive soil
moisture mechanics, it attempts to simulate them by including the triggering rain, the
antecedent rainfall, and the dry period in between. When the LTF is compared to the E-D
threshold, the LTF performs better for 81% of the testing cases.

Although various physically based landslide rainfall thresholds have been developed
for the study area, no satellite-based thresholds currently exist. The LTF threshold is one of
the first satellite-based thresholds for the Colombian region that attempts to simulate the
effect of this parameter in the area.

DM values for the Andes region range between 32 and 46 mm/day2 mark this as the
region with the least precipitation (in two rainfall episodes) necessary to trigger a landslide.
And although the DM map could serve as a guide for vulnerability and risk, several
challenges should be resolved to “fine-tune” the thresholds. These include introducing a
“time of event” parameter and physical or reliable satellite-based antecedent soil moisture
information when it becomes available.
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